
Solved by verified expert:1. A furniture company wants to test a random sample of sofas to determine how long the cushions last. They simulate people sitting on the sofas by dropping a heavy object on the cushions until they wear out; they count the number of drops it takes. This test involves 9 sofas.Mean = 12,648.889s = 1,898.673Assume it follows a normal distribution. Generate a 95% confidence interval for this problem. Remember to use a t-value. Label all the parts.2. The data below are a random sample of 30 observations drawn from a population that is distributed normally with μ = 75 and σ = 8. Sampling theory tells us that most of the confidence intervals constructed from samples drawn randomly from a population contain the true population value. Check this with this sample, since we know the true population value.Mean = 76.01Std Dev = 6.48n = 30.00Construct a 95% confidence interval around the mean using σ = 8. Since sigma is known, use a z-value from the standard normal distribution. For the confidence interval, show the estimate, the z-value, the bound of error (BOE), and the lower and upper values of the confidence interval.Describe the confidence interval in words. Did the interval contain the population value of 75?Construct the same 95% confidence interval, but use the sample estimate of the standard deviation and a t-value to construct the confidence interval. Compare this result with the interval constructed in the first part.
diff.xlsx
single.xlsx
se456.pdf
se45.pdf
se4.pdf
Unformatted Attachment Preview
Excel Difference of Means Worksheet
Developed by Dr. Tom Ilvento
Values in red need to be entered for the problem
Private
n
mean
Std Dev
Var
19
78.053
9.84
96.826
Public
Ho: Difference
17 Confidence Level
77.588
Alpha for Test
8.193
67.125 Difference in Means
0
95
0.05
F-Test For Equal Varainces
The Null Hypothesis for the F-Test is that the Variances
are Equal. A high p-value implies equal variances
Ratio of Variances 1.44
F-Test
0.233
Conclusion: Assume Equal Variances
0.465
Assuming Equal Variances
Not Assuming Equal Variances
Pooled Var
Pooled Std
82.849
9.102
There is no reason to assume the variances are equal. Therefore
Standard Error for test
degrees of freedom
3.0387
34
Standard Error for test
degrees of freedom
0.4650
3.039
Hypothesis Test
Hypothesis Test
Critical Value
1.691
2.032
Confidence Interval
t-value
BOE
-5.7105
Difference
Std Error
t* =
p-value
1-tailed
2-tailed
pool the variances and the degrees of freedom are calculated diffe
Difference
Std Error
0.153
0.4396
0.8793
95 % Level
2.032
6.1755
to
6.6405
Conclusion
Fail To Reject H0
Fail To Reject H0
3.007
34
Critical Value
1.691
2.032
Confidence Interval
t-value
BOE
-5.647
t* =
p-value
1-tailed
2-tailed
95
2.032
6.112
to
al Varainces
the F-Test is that the Variances
ue implies equal variances
sume Equal Variances
ariances
variances are equal. Therefore we do not
s of freedom are calculated differently.
0.465
3.007
0.155
0.4390
0.8780
% Level
6.577
Conclusion
Fail to Reject H0
Fail to Reject H0
Difference of Proportion Test
Developed by Dr. Tom Ilvento
Values in red need to be entered for the problem
X (count)
n
p
q
Variance
Std Dev
Pintrest LinkedIn
154
171
405
379
0.3802
0.4512
0.6198
0.5488
0.2357
0.2476
0.4854
0.4976
H0: Difference =
Confidence Level
Pooled Calculations
pooled p 0.4145
Variance
pooled q 0.5855
Std Dev
If we don’t assume p1 and p2 are equal under H0:
Standard Error for test
Hypothesis Test
Confidence Interval
Z-value
BOE
-0.1398
0
95
0.0351
0.2427
0.4926
If we assume p1 and p2 are equal under H0:
Standard Error for test
0.0352
Difference
Std Error
-0.0709
0.0351
Hypothesis Test Difference
Std Error
-0.0709
0.0352
z* =
p-value
1-tailed
2-tailed
-2.0185
z* =
p-value
1-tailed
2-tailed
-2.0149
95
0.0218
0.0435
% Level
1.960
0.0689
to
-0.0021
0.0220
0.0439
0.613545817
0.822115385
1.339941309
Standard Normal Curve Probability Distribution
The table is based on the upper right 1/2 of the Normal Distribution; total area shown is .5
The Z-score values are represented by the column value + row value, up to two decimal places
The probabilities up to the Z-score are in the cells
Z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.00
0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.01
0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.02
0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
0.3212
0.3461
0.03
0.0120
0.0517
0.0910
0.1293
0.1664
0.2019
0.2357
0.2673
0.2967
0.3238
0.3485
0.04
0.0160
0.0557
0.0948
0.1331
0.1700
0.2054
0.2389
0.2704
0.2995
0.3264
0.3508
0.05
0.0199
0.0596
0.0987
0.1368
0.1736
0.2088
0.2422
0.2734
0.3023
0.3289
0.3531
0.06
0.0239
0.0636
0.1026
0.1406
0.1772
0.2123
0.2454
0.2764
0.3051
0.3315
0.3554
0.07
0.0279
0.0675
0.1064
0.1443
0.1808
0.2157
0.2486
0.2794
0.3078
0.3340
0.3577
0.08
0.0319
0.0714
0.1103
0.1480
0.1844
0.2190
0.2517
0.2823
0.3106
0.3365
0.3599
0.09
0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.3621
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
0.3643
0.3849
0.4032
0.4192
0.4332
0.4452
0.4554
0.4641
0.4713
0.4772
0.3665
0.3869
0.4049
0.4207
0.4345
0.4463
0.4564
0.4649
0.4719
0.4778
0.3686
0.3888
0.4066
0.4222
0.4357
0.4474
0.4573
0.4656
0.4726
0.4783
0.3708
0.3907
0.4082
0.4236
0.4370
0.4484
0.4582
0.4664
0.4732
0.4788
0.3729
0.3925
0.4099
0.4251
0.4382
0.4495
0.4591
0.4671
0.4738
0.4793
0.3749
0.3944
0.4115
0.4265
0.4394
0.4505
0.4599
0.4678
0.4744
0.4798
0.3770
0.3962
0.4131
0.4279
0.4406
0.4515
0.4608
0.4686
0.4750
0.4803
0.3790
0.3980
0.4147
0.4292
0.4418
0.4525
0.4616
0.4693
0.4756
0.4808
0.3810
0.3997
0.4162
0.4306
0.4429
0.4535
0.4625
0.4699
0.4761
0.4812
0.3830
0.4015
0.4177
0.4319
0.4441
0.4545
0.4633
0.4706
0.4767
0.4817
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
0.4821
0.4861
0.4893
0.4918
0.4938
0.4953
0.4965
0.4974
0.4981
0.4987
0.4826
0.4864
0.4896
0.4920
0.4940
0.4955
0.4966
0.4975
0.4982
0.4987
0.4830
0.4868
0.4898
0.4922
0.4941
0.4956
0.4967
0.4976
0.4982
0.4987
0.4834
0.4871
0.4901
0.4925
0.4943
0.4957
0.4968
0.4977
0.4983
0.4987
0.4838
0.4875
0.4904
0.4927
0.4945
0.4959
0.4969
0.4977
0.4984
0.4987
0.4842
0.4878
0.4906
0.4929
0.4946
0.4960
0.4970
0.4978
0.4984
0.4987
0.4846
0.4881
0.4909
0.4931
0.4948
0.4961
0.4971
0.4979
0.4985
0.4988
0.4850
0.4884
0.4911
0.4932
0.4949
0.4962
0.4972
0.4979
0.4985
0.4988
0.4854
0.4887
0.4913
0.4934
0.4951
0.4963
0.4973
0.4980
0.4986
0.4988
0.4857
0.4890
0.4916
0.4936
0.4952
0.4964
0.4974
0.4981
0.4986
0.4988
3.1
0.4990
0.4991
0.4991
0.4991
0.4992
0.4992
0.4992
0.4992
0.4993
0.4993
Rejection regions for Common Values of Alpha
Alternative Hypothesis
Lower Tailed Upper Tailed
Two Tailed
alpha = .10
z < -1.28
z > 1.28
z < -1.645 or z > 1.645
alpha = .05
z < -1.645
z > 1.645
z < -1.96 or z > 1.96
alpha = .01
z < -2.33
z > 2.33
z < -2.575 or z > 2.575
Prepared by Tom Ilvento using statistical functions in Excel version 2008
Critical Values of t-Distribution
The table shows the critical t-values for a given alpha level (one-tailed or two-tailed)
and degrees of freedom. The degrees of freedom are the rows.
d.f.
0.2000
0.1000
Area in Two Tails
0.0500
0.0200
0.0100
0.0020
0.0010
d.f.
0.1000
3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372
1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
1.315
1.314
1.313
1.311
1.310
1.309
1.309
1.308
1.307
1.306
1.306
1.305
1.304
1.304
1.303
1.303
1.302
1.302
1.301
1.301
1.300
0.0500
6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
1.696
1.694
1.692
1.691
1.690
1.688
1.687
1.686
1.685
1.684
1.683
1.682
1.681
1.680
1.679
1.679
Area in One Tail
0.0250
12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.040
2.037
2.035
2.032
2.030
2.028
2.026
2.024
2.023
2.021
2.020
2.018
2.017
2.015
2.014
2.013
0.0100
31.821
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764
2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
2.453
2.449
2.445
2.441
2.438
2.434
2.431
2.429
2.426
2.423
2.421
2.418
2.416
2.414
2.412
2.410
0.0050
63.657
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
2.744
2.738
2.733
2.728
2.724
2.719
2.715
2.712
2.708
2.704
2.701
2.698
2.695
2.692
2.690
2.687
0.0010
318.309
22.327
10.215
7.173
5.893
5.208
4.785
4.501
4.297
4.144
4.025
3.930
3.852
3.787
3.733
3.686
3.646
3.610
3.579
3.552
3.527
3.505
3.485
3.467
3.450
3.435
3.421
3.408
3.396
3.385
3.375
3.365
3.356
3.348
3.340
3.333
3.326
3.319
3.313
3.307
3.301
3.296
3.291
3.286
3.281
3.277
0.0005
636.619
31.599
12.924
8.610
6.869
5.959
5.408
5.041
4.781
4.587
4.437
4.318
4.221
4.140
4.073
4.015
3.965
3.922
3.883
3.850
3.819
3.792
3.768
3.745
3.725
3.707
3.690
3.674
3.659
3.646
3.633
3.622
3.611
3.601
3.591
3.582
3.574
3.566
3.558
3.551
3.544
3.538
3.532
3.526
3.520
3.515
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Infinity
d.f.
d.f.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
1.300
1.299
1.299
1.299
1.282
1.678
1.677
1.677
1.676
1.645
0.2000
0.1000
0.1000
1.298
1.298
1.298
1.297
1.297
1.297
1.297
1.296
1.296
1.296
1.296
1.295
1.295
1.295
1.295
1.295
1.294
1.294
1.294
1.294
1.294
1.293
1.293
1.293
1.293
1.293
1.293
1.292
1.292
1.292
1.292
1.292
1.292
1.292
1.292
1.291
1.291
1.291
1.291
1.291
1.291
1.291
1.291
1.291
1.291
1.290
0.0500
1.675
1.675
1.674
1.674
1.673
1.673
1.672
1.672
1.671
1.671
1.670
1.670
1.669
1.669
1.669
1.668
1.668
1.668
1.667
1.667
1.667
1.666
1.666
1.666
1.665
1.665
1.665
1.665
1.664
1.664
1.664
1.664
1.663
1.663
1.663
1.663
1.663
1.662
1.662
1.662
1.662
1.662
1.661
1.661
1.661
1.661
2.012
2.011
2.010
2.009
1.960
Area in Two Tails
0.0500
Area in One Tail
0.0250
2.008
2.007
2.006
2.005
2.004
2.003
2.002
2.002
2.001
2.000
2.000
1.999
1.998
1.998
1.997
1.997
1.996
1.995
1.995
1.994
1.994
1.993
1.993
1.993
1.992
1.992
1.991
1.991
1.990
1.990
1.990
1.989
1.989
1.989
1.988
1.988
1.988
1.987
1.987
1.987
1.986
1.986
1.986
1.986
1.985
1.985
2.408
2.407
2.405
2.403
2.326
2.685
2.682
2.680
2.678
2.576
3.273
3.269
3.265
3.261
3.090
3.510
3.505
3.500
3.496
3.291
0.0200
0.0100
0.0020
0.0010
0.0100
2.402
2.400
2.399
2.397
2.396
2.395
2.394
2.392
2.391
2.390
2.389
2.388
2.387
2.386
2.385
2.384
2.383
2.382
2.382
2.381
2.380
2.379
2.379
2.378
2.377
2.376
2.376
2.375
2.374
2.374
2.373
2.373
2.372
2.372
2.371
2.370
2.370
2.369
2.369
2.368
2.368
2.368
2.367
2.367
2.366
2.366
0.0050
2.676
2.674
2.672
2.670
2.668
2.667
2.665
2.663
2.662
2.660
2.659
2.657
2.656
2.655
2.654
2.652
2.651
2.650
2.649
2.648
2.647
2.646
2.645
2.644
2.643
2.642
2.641
2.640
2.640
2.639
2.638
2.637
2.636
2.636
2.635
2.634
2.634
2.633
2.632
2.632
2.631
2.630
2.630
2.629
2.629
2.628
0.0010
3.258
3.255
3.251
3.248
3.245
3.242
3.239
3.237
3.234
3.232
3.229
3.227
3.225
3.223
3.220
3.218
3.216
3.214
3.213
3.211
3.209
3.207
3.206
3.204
3.202
3.201
3.199
3.198
3.197
3.195
3.194
3.193
3.191
3.190
3.189
3.188
3.187
3.185
3.184
3.183
3.182
3.181
3.180
3.179
3.178
3.177
0.0005
3.492
3.488
3.484
3.480
3.476
3.473
3.470
3.466
3.463
3.460
3.457
3.454
3.452
3.449
3.447
3.444
3.442
3.439
3.437
3.435
3.433
3.431
3.429
3.427
3.425
3.423
3.421
3.420
3.418
3.416
3.415
3.413
3.412
3.410
3.409
3.407
3.406
3.405
3.403
3.402
3.401
3.399
3.398
3.397
3.396
3.395
97
98
99
100
110
120
130
140
150
Infinity
1.290
1.290
1.290
1.290
1.289
1.289
1.288
1.288
1.287
1.282
1.661
1.661
1.660
1.660
1.659
1.658
1.657
1.656
1.655
1.645
1.985
1.984
1.984
1.984
1.982
1.980
1.978
1.977
1.976
1.960
2.365
2.365
2.365
2.364
2.361
2.358
2.355
2.353
2.351
2.326
2.627
2.627
2.626
2.626
2.621
2.617
2.614
2.611
2.609
2.576
3.176
3.175
3.175
3.174
3.166
3.160
3.154
3.149
3.145
3.090
3.394
3.393
3.392
3.390
3.381
3.373
3.367
3.361
3.357
3.291
Excel Paired Difference of Means Worksheet
This is used for the situation where the two groups are not independent from e
Our startegy will be to take the difference between the two groups as a single v
The sample size must be the same for each measurement, and the measuresm
so that you are calculating the difference for the same subject in both time peri
You can enter the summary statistics or you can enter the data to the right.
Values in red need to be entered for the problem
Post
n
mean
Std Dev
Variance
20
5.45
2.06
4.244
Pre
20
2.4
1.35
1.823
Difference Ho: Difference
20Confidence Level
3.05
1.76
3.098
Standard Error for test
degrees of freedom
Hypothesis Test
Confidence Interval
t-value
BOE
2.226
0.394
19
Difference
Std Error
3.050
0.394
t* =
p-value
1-tailed
2-tailed
7.750
95
2.093
0.824
to
0.000
0.000
% Level
3.874
0
95
dependent from each other. One example would be the same subjects measured at two time period
oups as a single varaible, and then test to see if the mean difference is zero or not.
nd the measuresment s must be in the same order
t in both time periods.
ta to the right.
Use this if you entered the data to the right
Post
20
18.15
2.87
8.239
n
mean
Std Dev
Variance
Pre
20
7.10
4.05
16.411
Difference
20
11.05
4.02
16.155
Standard Error for test
degrees of freedom
Hypothesis Test
Confidence Interval
t-value
BOE
9.169
0.899
19
Difference
Std Error
11.050
0.899
t* =
p-value
1-tailed
2-tailed
12.295
95
% Level
2.093
1.881
to
0.000
0.000
12.931
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
easured at two time periods.
ro or not.
If you have’nt calculated the difference, you can enter or copy the data here for the calculations.
This worksheet will calculate the difference for up to 550 subjects.
N
Mean
Std Dev
Variance
20
18.15
2.87
8.24
Subject
Post
20
7.10
4.05
16.41
Pre
20
11.05
4.02
16.16
Difference
N
Sum Sqrs
Q^2
Q
20
2749
137.45
11.72
Q^2
1
21
7
14
196
2
21
14
7
49
3
20
13
7
49
4
17
3
14
196
5
19
8
11
121
6
14
0
14
196
7
18
5
13
169
8
20
2
18
324
9
19
8
11
121
10
16
9
7
49
11
22
5
17
289
12
16
9
7
49
13
12
1
11
121
14
16
6
10
100
15
22
10
12
144
16
16
11
5
25
17
16
11
5
25
18
20
2
18
324
19
20
21
22
23
24
25
16
22
7
11
9
11
81
121
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
for the calculations.
Component Percent
Part due to Var
Part due to Means
Q^2
15.35
122.10
137.45
11.2%
88.8%
Single Mean or Proportion Confidence Interval Worksheet Developed by Dr. Tom Ilvento
Items in red need to be entered by you
MEAN
Std Deviation
Sample Size
Confidence Level
Standard Error
Z or t-value
BOE
Lower
Upper
40.6
1.6
30
95
0.292
PROPORTION
Sample Size
Confidence Level
Std Deviation
Standard Error
Z-value
BOE
Lower
Upper
0.5000
600
95
0.5000
0.0204
1.960
0.0400
0.4600
0.5400
Using Z
1.960
0.573
40.03
41.17
Using t
2.045
0.5974
40.003
41.197
d by Dr. Tom Ilvento
Small Sample Hypothesis Test and Confidence Interval, Sigma Unknown
Developed by Dr. Tom Ilvento
Items in red are values you need to enter
Hypothesis Test using t-distribution
Sample Mean
12648.89
Sample std dev
1898.67
Sample Size
20.00
Null Value
11500.00
Alpha Value
0.050
Confidence Level
95
d.f.
19.00
Std Error
424.556
T.S. t*
2.71
p-value 1-tailed
p-value 2-tailed
0.0070
0.0140
Conclusion
Reject Ho:
Reject Ho:
1-tailed Critical t Value
2-tailed Critical t Value
-1.729
-2.093
1.729
2.093
Confidence Interval using t distribution
MEAN
12648.889
Std Deviation
1898.673
Sample Size
20.000
Confidence Level
0.950
Standard Error
424.556
t-value
2.093
BOE
888.606
Lower 11760.283
Upper 13537.495
-5.0 -4.0
-5.0 -4.0
For a Proportion
Null Value
Alpha level
Sample Size
Sample Proportion
Variance
Standard Deviation
Std Error
0.5
0.05
100
0.56
0.2464
0.4964
0.0500
T.S.
Critical Value
p 1-tailed
p 2-tailed
1.200
0.1151
0.2301
p-Values for Two-Tailed Test
-4.0 -3.0 -2.0 -1.0 0.0
1.0
2.0
3.0
4.0
5.0
p-Values for One-Tailed Upper
p-Value for One-Tailed Lower
-5.0 -4.0 -3.0 -2.0 -1.0 0.0
-4.0 -3.0 -2.0 -1.0 0.0
1.0
2.0
3.0
4.0
5.0
1.0
2.0
3.0
4.0
4.0
5.0
z
-4.000
-3.867
-3.733
-3.600
-3.467
-3.333
-3.200
-3.067
-2.933
-2.800
-2.667
-2.533
-2.400
-2.267
-2.133
-2.000
-1.867
-1.733
-1.600
-1.467
-1.333
-1.200
-1.067
-0.933
-0.800
-0.667
-0.533
-0.400
-0.267
-0.133
0.000
0.133
0.267
0.400
0.533
0.667
0.800
0.933
1.067
1.200
1.333
1.467
1.600
1.733
1.867
2.000
2.133
2.267
f (x )
0.0001338
0.0002261
0.0003753
0.0006119
0.0009801
0.0015423
0.0023841
0.0036204
0.0054011
0.0079155
0.0113960
0.0161179
0.0223945
0.0305672
0.0409873
0.0539910
0.0698671
0.0888185
0.1109208
0.1360825
0.1640101
0.1941861
0.2258628
0.2580778
0.2896916
0.3194480
0.3460539
0.3682701
0.3850069
0.3954118
0.3989423
0.3954118
0.3850069
0.3682701
0.3460539
0.3194480
0.2896916
0.2580778
0.2258628
0.1941861
0.1640101
0.1360825
0.1109208
0.0888185
0.0698671
0.0539910
0.0409873
0.0305672
F(x)
0.0000317
0.0000552
0.0000945
0.0001591
0.0002635
0.0004291
0.0006871
0.0010823
0.0016767
0.0025551
0.0038304
0.0056492
0.0081975
0.0117053
0.0164487
0.02275 …
Purchase answer to see full
attachment
Order a plagiarism free paper now. We do not use AI. Use the code SAVE15 to get a 15% Discount
Looking for help with your ASSIGNMENT? Our paper writing service can help you achieve higher grades and meet your deadlines.

Why order from us
We offer plagiarism-free content
We don’t use AI
Confidentiality is guaranteed
We guarantee A+ quality
We offer unlimited revisions